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Vortex merging, oscillation, and quasiperiodic structure in a linear array of elongated vortices
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Linear stability and the secondary flow pattern of the rectangular cell Howsinkxsiny (0<k<®), are
investigated in an infinitely long array of the direction [(—o,©)X[0,7]] or various finiteM arrays
([OM 7/k]X[0,7]) on the assumption of a stress-free boundary condition on the lateral walls. The numerical
results of the eigenvalue problems on the infinite array show that a mode representing a global circulating
vortex in the whole regiong~siny) appears in thg-elongated casek 1), which confirm the secondary
flow observed in Tabelingt al. [J. Fluid Mech.213 511 (1990], while a mode representinguasiperiodic
arrays of counter-rotating vortices appears inxhelongated casek{1) at large critical Reynolds number.
In large finite arrays the mode connected with those of the bhseec appears for most cases while another
(oscillatory mode appears for vortices elongated in thdirection. The parameter region of the oscillatory
modes becomes wider when the system sigZe pecomes smaller. For a pair of counter-rotating vortices
(M=2) at the poink, between the regions of the two modes the critical Reynolds number takes an extreme
large value. Analysis of a finite nonlinear system obtained by the Galerkin method shows the nonlinear
saturation of the critical modes, though its results are in quantitative agreement with those of the linear stability
in a limited region ofk. [S1063-651X97)12905-]

PACS numbe): 47.54+r, 47.20-k, 47.32-y

I. INTRODUCTION tion, although a suitable representation of the frictional effect
is still being debated4,9]. Along this line, we adopt the

Research on pattern formation in a nonequilibrium dissitwo-dimensional Navier-Stokes equation in order to analyze
pative system is regarded as a fundamental problem in moabur problem.
ern physics. One of the simplest nontrivial spatial patterns is In the Rayleigh-Beard problem and the Taylor-Couette
apparently a periodic structure. This structure appears geroblem, which are regarded as a paradigm of the pattern-
neric in the sense that it is formed through the nonlineaforming hydrodynamical systems, periodic structures emerge
saturation of the unstable mode to a quiescent state. Th&pontaneously by a linearly unstable mode, not by an exter-
bifurcation of the periodic structure is a central topic of thenal forcing; the form of the observed vortices is almost iso-
pattern formation in nonequilibrium systems such as fluidtropic. On the other hand, in our problem the form and the
dynamics, chemical reaction systems, and so on. Variousonfiguration of the vortices are controlled by the applied
kinds of instability from the periodic structures, especiallyforcing and the setup of the experimental apparatus with
so-called rolls, are found and analyzed based on the basrelative ease. Actually the linear array of the elongated vor-
equations and the reduced equations such as the envelofiees is achieved in the experiment by Tabeligigal. [6].
equation, the phase equation, and sd bn3]. Hence this problem is very suitable to investigate how the

Here we consider the problem of the stability and thestructure of the individual vortex in the linear array corre-
bifurcation of a linear array of counter-rotating vortices in alates with the type of bifurcation or the dominant linearly
very thin layer of incompressible viscous fluids. The basicunstable mode. In this study we focus on the structure of the
state has a one-dimensional periodicity in an infinitely ex-unstable mode of several arrays of various elongated vortices
tended array. In laboratory experiments equipment is deviseih this paper. Here we do not consider more general configu-
to realize such spatially periodic flows in which an electro-rations, or lattices of vortices. The linear stability of square
lyte or a liquid metal in a very shallow vessel is driven by thelattices of isotropic vortices was investigated by Thiglsd,
action of Lorentz force periodically arranged. Such experi-who did not consider the case of the linear array. The results
ments are now widely performed by several grolps7]to  were extended to arbitrary lattices of the isotropic vortices in
investigate the bifurcation of the flows and the two- Fukuta and Murakamjll], where a qualitative difference
dimensional turbulence. In particular, an initial stage of ourbetween the linear array and the others was discussed.
investigation8], where two-dimensional unbounded lattices  In addition to the above purpose, the interaction of several
of vortices are considered, aims to explain the results of theoncentrated vortices is a fundamental problem in fluid dy-
experiments by Tabelingt al. [6] theoretically. Here we namics. A part of our problem seems related to the dynamics
clarify the nature of its stability, thoroughly taking into ac- of separated vortices in a wall of confined systems which
count the lateral boundaries and the wide range of paransften appear in engineering applications. For example, in
eters. It is known that this type of flow is approximately rapidly diverging channel flow a pair of counter-rotating vor-
described by the two-dimensional Navier-Stokes equatiotices appears attached to the diverging part of the ).
with inhomogeneous terms due to an external forcing and his situation is achieved approximately planar; it resembles
additional damping terms originating from the bottom fric- the case of a pair of counter-rotating vortices in a rectangular
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region treated here. Therefore it is expected that our problerfriction that inevitably exists in laboratory experiments. This
is useful to understand a general feature of the stability of thés also a strong assumption for our treatment. Therefore we
planar vortices confined by the rigid wall. The roll observedwould like to stress that our treatment should be regarded as
in the convection of the troposphere is often stretched horia modelin connection with the laboratory experiments.
zontally [13]. Our results of long arrays of the vortices may The linearized equation governing the stream function
give some insight into the secondary bifurcation of this pat-i(x,y,t) of infinitesimal disturbance superposed on the main

tern. flow (1) is given by
This paper is organized as follows. First, we present the _ _
main flow modeling the elongated vortex, formulate the Ay (AVY,¢)  I(AyYW) 1
1 il i =5 A lpV (5)
problem of the linear stability, and state the assumption of ot A(X,Y) A(X,y) R

our treatment. Second, we give the main results of the linear

stability, i.e., the critical Reynolds number and the structurevhere we omit the nonlinear term of the disturbances. We
of the critical mode. Third, in order to investigate qualitative also apply the stress-free boundary conditions for the distur-
nonlinear dynamics we introduce and analyze the system dfance:

the limited modes on the basis of the Galerkin method. Fi-

nally, we summarize our results, discuss the relation of the Yp=A¢=0, (6)

experiments and other problems, and comment on IOOSSiblﬁhich is the same as that of the main flow. In accordance

future works. with Eq. (6), the stream function in the finite arraf, ;

=[0,M#w/K]X[0,7], is expanded as
Il. FORMULATION OF THE PROBLEM

We consider a linear array in thedirection of the rect- P(x,y,1)=exp(ot) 2 an, nSin m X simy 7
e m,n=1 ' M '

angular vortices represented by

\IT(x,y)=sinkx siny, (1) Note that the application of the stress-free boundary condi-
tion as a substitute for a viscous boundary condition means

where 0<k<e. Hence this flow neglects the inner structure replacement of the first derivative of the stream function with
of the individual vortex observed in experiments, though itsthe second one. Hence the number of boundary conditions is
streamlines resemble the observed ones. The reason feuitable for the viscous term. We also expand the stream
choosing this flow is to conduct the eigenvalue problem relafunction in the infinitely long array, D, ;=(—%,%)
tively easily in numerical computation. We consider two X[0,7], as
types of regions:

)

Dy 1=[0OM /K] X[0,7], ) d(xy, 0 =explottiax) 2, apsimy, ®

D..1=(—%,2)X[0,7]. (3)  wherea(0<a<1) is a real Floquet number.

Substitution of Egs(7) and (8) into Eq. (5) leads to an
a e o infinite set of simultaneous algebraic equationsdgy,, ex-
boundary condition(or rigid boundary condition only the pressed symbolically asa=Da, wherea and D are the
impermeable condition. In addition to the latter, the relationtwo_ and four-dimensional matrices of infinite order, respec-
AW =0 holds; the so-called stress-free boundary condition i?ively. Therefore we can obtain the growth rate=Reo]

satisfied. These conditions may not be satisfied well in sideg)y solving this eigenvalue problem. We reduce the range of

walls of laboratory experiments. Nevertheless, we accept th@xponents to 8 @< 0.5 due to the form of the main flogd).

assumption because the numerical calculation is much €asig{ ihe numerical computation we replace the infinite set with
than the nonslip condition. The justification for this assump-y finite set of equations | <N, ,|n|<N.,). In order to get
tion requires comparison with experiments or numerical cals " y

: ) : i . > sufficient accuracyiN, X N, should be varied in a wide range
culation with the nonslip condition. Later we argue this pointy .\ eon 34 and 8x 40

in g_onclliﬂin% Re_marksl_. di thin | id In an unbounded region;{,) X (—o0,), the solution
ince the flow is realized in a very thin layer, we consider Eq. (5) is represented in the form

the governing equation for two-dimensional incompressible

Note that the main flow does not satisfy the nonsligcous

fluids as follows: D p(6Y,1) = eX T+ i (akxt BY)TF 4 p(kXY),  (9)
IAW n I(AW, V) :E AP — (k*+1)2 Sinkx si since the coefficient functions in Ed5) have the period
at a(X,Y) R R v 27/k in X and 27 in y, wherea and B are (rea) Floquet

(4)  exponents. The symmetry of the main flow(—x,y)

where all quantities have been made nondimensional,:q,(x'_y): —W(xy) ensures that finear combinations

t is the time, ¥ is a stream functionR is the Reynolds ~ T 7 _
number, Af=(32t/x%)+(a2f1ay?), and a(f,g)/d(x.y) Vap(XY:D) = e gl =X YD = P p (X =Y
=(oflax)(agldy) — (oflay)(dglox). The last inhomoge- +Al/;a,ﬁ(—xy—y,t)

neous term represents an external force, which permits the

main flow to exist. Here we neglect the effect of the bottomand
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Ea,ﬁ(xvy!t)_ﬂlja,ﬁ(xv_y,t) 50
are also a solution of Eq9) in an unbounded region. The -
former combination off, ; satisfies the boundary condition
(6) in Dy ; for some discrete values ofy,,3,: R ]
(4
_m =0 =0 M 10 |
a’m—m, ,Bn— , m= ,...,7 , ( ) 30 k |
where [x] denotes the largest natural number that is not .
greater tharx. The eigenmode) is represented by 2
lﬂ(xiy!t):Zam,Bn(X!yrt)_Eam,ﬁn(_xryit) .
_:r/;am,,Bn(Xi_yit)+aam,ﬁn(_xa_y1t)v 10 -
(11) J
In a similar way we have the representation iy, ,,
_ _ 0 12
w(xvyit)zwaﬁn(x!yvt)_lr/la,ﬁn(xa_yrt)- (12) ]'/k

In order to save the CPU time we often use the results of the FIG. 1. The critical Reynolds numb&. in the range 61k
linear stability in an unbounded region and relate them to the<1.2 for M =cc.
problemD,, , instead of solving the problem directly.
branches of an intersecting parabolic curve at the critical
Il. RESULTS OF LINEAR STABILITY Reynolds numper. |n the next section we will di'SCUSS th?
nature of the bifurcation based on a crude Galerkin approxi-
In this section we give the results of the linear eigenvaluemation. The Floquet exponenti, of the critical modes is
problem. We have two parameters characterizing the maiglways zero for 8 1/k<1 while . is nonzero for ;{>1.
flows: 1k is the ratio of the length of the sides of each vortexFigure 2 shows that, grows abruptly in the range Kt 1
and M is the number of the vortices. Hereafter we uske 1/ and takes a value of 0.5 t=1.16. Note that is less than
instead ofk for convenience. Hence the case with small 1/ 0.5 for the symmetry. Figure 3 shows how the marginal Rey-
corresponds to thg-elongated vortex while that with large nolds numbers depend anfor several IX. The Reynolds

1k to thex-elongated vortex. number at the origin changes from minimum to maximum.
At k=1 the second derivative d®(k,a=0) vanishes. The
A. Infinitely large array of vortices: M= modes should be regarded as a modulation of the periodic

Here we neglect the lateral boundaries that are parallel to
they axis; it is the simplest case of all and has the same 05 Y T T T
symmetry of the roll in the infinite region. We present the
main results of the critical Reynolds number for various val-
ues of the inverse of the parametek between 0 and 1.2 in
Fig. 1. This shows that the critical Reynolds number in-
creases with increasingkl/ The curve in the range<01/k Q|
<1 is the same as the Reynolds number due to the
periodic modein Fig. 1 of [8]. Note thatk in that work 03 |
corresponds to k/in this work. The large-scale mode, which
has an almost uniform structure and whose growth rate
shows the negative eddy viscosity, is excluded by the latera
boundaries. We would like to stress that the array of the
y-elongated vortices (k&< 1) becomes unstable at relatively 5
low Reynolds number while that of theelongated vortices
(1/k>1) becomes remarkably stable. We do not obtain the 0.1 |
critical Reynolds number for k1.2 because of the lack of
memory of the standard workstation. This result suggests
that the ratio of the sidéls is a very important factor on the L L | !
order of the critical Reynolds number. 0 0.2 0.4 0.6 0.8 1 1.2

Next we describe the character of the critical modes. The 1/k
critical modes are alwaystationary (i.e., Im¢=0); the bi-
furcation is expected to be a pitchfork type and cause a tran- FIG. 2. The critical Floquet exponent, in the range 81k
sition from a stable steady state to one of the two steady1.2 for M=,

04 I
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x 107 /k

20 FIG. 5. (a) The streamlines of the critical mode kf1.1. (b)

"_,_/// The streamlines o = sinkx siny+cy (c is 0.3, ¢ is the quasiperi-

k=09 odic mode, and /| max=1) in the case wittk=0.33.
10 - .
the others are squeezing. The growing process of the distur-
L ! L L ! ! L L bance looks likevortex mergingof pairs of counter-rotating

0 0.1 0.2 0.3 0.4 05 vortices. It should be noted that this merging is qualitatively

a different from the merging of the vortex with the same sign
of vorticity usually observed in an unbounded region. As
FIG. 3. The marginal Reynolds numbB(«) for k=0.9,1,1.1  ysyal in pitchfork bifurcation, the sign of the vorticity is not
for M=ce. determined by the theory of the ideal situation; some biases
in the laboratory experiments may play a decisive role in its
mode ata=0 with the part exfgx). Generally the period- Selection. Figu_re &) shows the str_ucture of.the _crit.ical mode
icity 2/« is incommensurate with the basic periodicity; we for k=1.1, which shows the stationaguasiperiodicstruc-
call these types of modepiasiperiodicmodes. ture. The chang_e of the sign of the vortlc!ty is due to the part
Figure 4a) shows the structure of the periodic mode for ©f the exponential factor of the eigenmofde., exp{ax)]. It
k=0.33, which shows the global rotation similar to the casdS confirmed that the structure of the periodic p&itkx,y),
k=1 [11]. In the upper part the flow is directed rightward 1S s_lmllar to that of the periodic mode. S_uperpqsmon of the
while it is directed leftward in the lower part. As was pointed M&in flow and the mode shows the quasiperiodic array of the
out[8], the streamlines of the superposition of the main flowVOrtices in Fig. ¥b). This is, to our knowledge, the first
and the disturbance in Fig(# are very similar to the ones thgoreUcaI eV|denc_:e of spontaneous.for'matlon of a quasiperi-
observed by the experimenft§]. The linear array becomes odic chain of vortlces frpm the periodic chain, though the
composed of tilted vortices, alternatively big and small. Aslaboratory experiments in these cases have not been per-

the disturbance grows, half the vortices are expanding anfPrmed yet. Note that the large critical Reynolds number
corresponds to the appearance of a quasiperiodic mode.

(a) B. A pair of vortices: M=2

In contrast with Sec. Ill A, we consider another limit i.e.,
————————————————_——] the smallest systems of the counter-rotating vortices. We
note that no experiments of this configuration have been con-

y AN N N e e ducted yet, though the transition from two pairs of counter-
N NN rotating systems is investigated in the experiments of Tabel-
ing et al. [6].
0 - 10m /k We present the main results of the critical Reynolds num-
ber for various values of the inverse of the parameté&r 1/
(b) between 0 and 1.2 in Fig. 6. There are two critical curves in
contrast with the preceding subsection. The critical Reynolds
x — number for a giverk is always larger than the corresponding
t one for the infinitely long array. This is a natural result be-
cause the confinement of the system excludes the large-scale
4 disturbances. A stationary mode gives the right curve while
N another oscillatory mode gives the left one. It is a remarkable
- fact thatR. becomes very large aroutke= 0.5, though we do
0 z 10m/k not obtain an accurate value. Apart from this region, the
tendency of the right curve resembles that of the curve in
FIG. 4. (3) The streamlines of the critical mode k¥ 0.33.(h)  Fig. 1. This result also suggests that the ratio of the siles,
The streamlines off =sinkxsiny-+cy (¢ is 0.3, ¢ is theperiodic IS a very important factor on the order of the critical Rey-
mode, and /| max=1) in the case wittk=0.33. nolds number.
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FIG. 6. The critical Reynolds numbé&, in the range 6<1/k
<1.2 for M=2. The bold line is due to the stationary mode; the
dashed line is due to the oscillatory mode.

Next we describe the character of the critical modes. The
critical modes arestationary (i.e., Img=0) in the range
1/k>0.5; the bifurcation is expected to be a pitchfork. On
the other hand, the modes awscillatory (i.e., Imo#0) in
the range ¥<0.5; the Hopf bifurcation is expected. The
frequency of the critical modes decreases withititreasing
until 1/k=0.5, as shown in Fig. 7. In the next section we will
discuss the nature of the bifurcation based on a crude Gale
kin approximation.

Figure 8a) shows the structure of the stationary mode for

k=0.6, which shows the global rotation of a system size.

0.25

0.2

0.15

0.1

0.05

1.2
1/k

FIG. 7. The critical frequency; in the range 8<1/k<1.2 for

M=2.
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FIG. 8. (a) The streamlines of the critical mode k& 1.1. (b)
The streamlines o =sinkx siny+cy (c is 0.3, ¢ is the stationary
mode, and /| max=1) in the case wittk=0.6.

The streamlines are symmetric wik+ 7/k. However, the
velocity does not have a reflectional symmetry with
=7/k as opposed to the main flow. As usual in pitchfork
bifurcation, the sign of the vorticity is not determined by the
theory. Figure &) shows that one vortex is expanding and
the other is shrinking as the disturbance is growing. It also
looks like a vortex merging of a pair of counter-rotating vor-
tices. Figures @) and 9b) show one-quarter of the period of
the oscillation of the structure of the critical mode fior
=0.4. At an initial time with a suitable pha$€ig. 9a)] it
looks like a global rotation of the stationary mode. At one-
quarter of the period it looks a pair of counter-rotating vor-
tices. The separated streamline is nearly parallel toxthe
axis; it is approximately normal to that of the main flow.
Figures 9c) and 9d) show that the flow of the main flow
plus the mode has no apparent symmetry; it becomes less
symmetric than the main flow.

This type of oscillation is observed in the four-vortex sys-
tem[14]. In this problem the interchange of the modes simi-
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a (c)
( ) t =1 t =1
T T
J K‘ ST
/ S
" 7N \
!‘3: !'.' ‘\\‘ "J/ f i
\\\ //
Lo
\
0 z o [k 0 z o[k
b d
(®) t=ty+T/4 (d)
iy Y

o2r [k

0

o[k

FIG. 9. (@ The streamlines of the critical mode &F=0.4 att=t,. (b) The same aga) at t=ty+T/4. (c) The streamlines of¥
=sinkxsiny+c (c is 0.3, ¢ is the oscillatory mode, and ¢|na=1) in the case witkk=0.4 att=t,. (d) The same a¢d) att=t,+T/4.

lar to our problem is shown by the analysis of the truncated=c. Three curves are found. The right ofeéosed triangles
system and a few laboratory experiments. Hence the oscillaepresents the stationary mode, which behaves in a way simi-
tory instability may be generic in the interaction of the |ar to the stationary mode ofl =2. It is between the curves
y-elongated vortices in a strongly confined system. Howevergf M=2 andM == as we expect. The position of the ex-
the singular behavior similar to our problem is not obtainedireme large value of the critical Reynolds number shifts left-
in the four-vortex system. ward. The middle curvéopen trianglesrepresents the oscil-
latory mode, which crosses the right curve in contrast with
C. Medium size of arrays of vortices: M=3,4 the caseM =2. The left curve(closed trianglesrepresents
A natural question arises: how are the above two extrem@nother stationary mode, which does not appear in case
cases connected? M=2. Figure 11 shows the results of the critical Reynolds
Figure 10 shows the results of the critical Reynolds num-humber of two pairs of vortices:M=4 with the cases
ber of three vortices: M =3 with the caseM =2 andM M =2 andM =90, which is similar to Fig. 10 qualitatively.
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IV. RESULTS OF NONLINEAR TRUNCATED SYSTEMS

50
In this section we clarify a nonlinear development of the

disturbance and a formation of the secondary flow pattern
| using a severely truncated system based on the Galerkin
method. It is expected that the cases with small critical Rey-
nolds number are explained reasonably because the trunca-
tion numberN, XN, is small enough to obtain a reliable

. critical number.

R N
1%

A. Infinitely large array of vortices: M =

The principle of the truncation is based on the results of
the eigenvalue problem in the preceding section. In our prob-
lem the structure of the eigenmode includes the largest com-
ponent, which is limited by the system size. Usually it cor-
responds to the most energy-containing component. Hence
we must include at least the main flow and the largest com-
ponent in the truncated system. Nonlinear interaction be-

0 o7 o4 o6 o8 " v tween modes produces other modes. Furthermore, these
1/k modes interact with the former two modes so as to generate
other modes. Here we only take the former two modes and

FIG. 10. The critical R Id b&. in th &1k the modes produced by them and construct the nonlinear
12 for = S.eL(z)r\l/vIg?boIZyl?r?e,sthneugatigr:gry ;gzggfmzw; ordinary differential system. Hence it is regarded asntirei-
upper bold line, the stationary mode ft=2; dashed line, the mumnonlinear _trunc;atgd system. .
oscillatory mode forM =2; closed triangles, the stationary mode BaS(.ad on this principle we expand the stream function as
for M=3; open triangles, the oscillatory mode figr= 3. follows:

T e

20

10

W (X,Y,t)= ho(t)sinkx siny + ¢, (t)siny

From Figs. 10 and 11 we learn that the results for rela- + U (1)COKX Si (13)
tively large 1k(>0.5) are not changed appreciably for vari- Ya(t)COKX SN
OhUSM ) dOn t_he gther hgr_]d, g little cgggllé:at:d mtercgange OLI'he first term is the main flow, the second term is the largest
the moges Is observec in the rang 5. Here we donot o e component in the linear eigenmode. These terms

pursue the details of the regiork#/0.1. generate the last term through the nonlinear interaction.
Substitution of Eq(13) into the basic equatiof¥) gives

the coupled ordinary differential equations as follows:

dio k(k?+3) k?+1 (k2+1)F
At 2kEen) M Tt TR
dy, 3k 1
a7 ‘/’2'//o_§ P,
d K3 k?+4
o (14)

9t 2era) T TR Ve

Note that we replace the forcing term by-[(k?
+1)?F/R]sinkxsiny in Eq. (4).

Next we set the left-hand side of E({.5) equal to zero in
7 order to obtain the fixed poinfor the steady state Two

types of fixed points are found:

'r//pOZF’

1/k Iplzoa

FIG. 11. The critical Reynolds numb&; in the range & 1/k p2=0, (19

<1.2 for M=3. Lower bold line, the stationary mode fth = oo; ) _ o
upper bold line, the stationary mode fot=2; dashed line, the Wwhich represents the main flow maintained by the external

oscillatory mode foM =2: closed squares, the stationary mode for forcing without disturbances. No existence condition is re-
M =4, open squares, the oscillatory mode fbr=4. quired as we expect,
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1/k=1/3
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R

FIG. 12. The steady state is plottedRat 1. The critical Rey-
nolds number is 2.36.
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¢SO 3
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50 | T —

25

FIG. 13. The critical Reynolds humb&; in the range 6<1/k
<1.2 forM=00. The bold line is by the three-mode truncated sys-
tem; the closed circles are by the converged value of the eigenvalue
problems.

This corresponds to the existence condition of the latter fixed
points, though we fix the forcing constakRthere. The un-
stable mode for the fixed point has no imaginary part. Nu-
merical simulation of the truncated system shows that the
unstable mode to the main flows,, grows to saturate and
constitutes the secondary steady flghy. Hence this bifur-
cation is anormal pitchfork. From Fig. 13 the critical value
R. grows with increasing k/ which is consistent with the
results of the eigenvalue problem. The agreement between
them for 1k<<0.5 is remarkable.

According to the linear stability, the latter fixed point is

which represents the secondary steady flow with saturate@ways stable for arbitrari? andF if they are satisfied with
disturbances. The latter exists only if the following inequal-the existence conditiofi8). A number of numerical simula-

ity is satisfied:

F
——1>0, 1
Jo (17)
which is also written as
26 k2+4 18
3R K (18

It is remarkable that the component of the main flgw is
constant irrespective & in Eq. (15) if we fix R and increase

tions of the systenil5) always show that the fixed point is
globally stable, though we do not prove the global stability
of the latter fixed point rigorously. Note that the former fixed
point is shown to be globally stable when it is linearly stable
[15]. Hence we cannot predict the secondary instability in
the framework of this system. Indeed this does not mean that
the secondary instability never occurs in the originally
treated problem. An increase of the truncation number may
cause the results to change qualitatively. However, our major
concern is to understand the primary instability of the main
flow; this problem is beyond our scope.

In Fig. 14 we plot the ratio of the component generated
through the nonlinear interaction to the most energy-

F. Hence the excess energy is used qnly .to make the diStUE'ontaining mode: |,|/|¢4]. The solid line shows the re-
bance grow. This feature is illustrated in Fig. 12. The results its of the steady stai¢he latter fixed pointin the trun-
are essentially the same as those of the three-wave resonanggeq system while the open circles are obtained by the linear

with constant forcing and dampind5]. In Fig. 12 we fixF

eigenvalue problem. Note that this ratio of the steady state

(=1) and increas® in order to compare the results of the goes not change the magnitude of the steady state. The co-

linear eigenvalue problem.

incidence between two values for smalk 1/<0.5) means

The linear stability of the former fixed point gives the nat the main flow plus a considerably large amplitude of the

critical condition

26 K*+4

most unstable mode corresponds to the steady state satisfied
by the nonlinear equation. Indeed we do not accept that this
severely truncated system is still valid in a strongly super-
critical state. In this sense this coincidence partially supports
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FIG. 15. The critical Reynolds numb& in the range 8<1/k
FIG. 14. The ratio of the most energy-containing mode to the<1.2 forM =2. Bold line,c;=0; dashed line¢,;c,—c3=0 by the
main flow: |#,|/|¢]|. The solid line shows the results of the four-mode system; closed circles, the stationary mode; open circles,
steady statéthe latter fixed pointin the truncated system while the the oscillatory mode by the converged values of the eigenvalue
open circles are obtained by the linear eigenvalue problem. problem.

the position that the streamlines of the naive superposition of .16 we do not try to obtain all steady states. We only
the linearly unstable mode on the main flow resemble thosgnsiger the linear stability of the trivial steady state:
of the laboratory experiment fdc=0.33 in[8].

B. A pair of vortices IpO: F,

We apply the same principle of the selection of the com-
ponents in order to obtain the minimum truncated system. — )
The most energy-containing component in the most unstable Ppi=0 (1=1-3). (25
mode is sikx/2 siny of the system size. Two other compo-
nents are generated through the nonlinear interaction b

Employing the linear stability analysis of the steady state we
tween the main flow and this component. Hence we set ploying Y 4 y

obtain the characteristic equation

kx kx
= t)sinkx siny + t)sin — siny + t)sin = sin
v=o(1) Y-+ g1 ()sin = siny+ g(t)sin - sin2y o34 0107 6yt 640, 26
~ 3kx
+ f3(t)sin - sin2y. (20

where we do not give the explicit form of the coefficienjs
(j=1-3) to save space. Applying the Rouse-Hurwitz crite-
rion to Eq. (26), we obtain the critical Reynolds number
R.(k) as shown in Fig. 15. The solid curve showg=0
while the dashed curve showsgc,—c3;=0. In the downside
dy _ k(2k?+3) 9% k?+1 of each curve, the inequality;>0 andc,c,—c3>0 holds,
respectively. The region below both curves is stable while

Substitution of Eq(21) into the basic equatio¥) gives the
coupled ordinary differential equations as follows:

sy T siE D YT TR

X (ho—T ) 1) the other regions are unstable. The boundary 0 indicates
0 ' the exchange of stability while the boundazyc,—c;=0
diy ok(K2—4) K(5K2+12) K2+ 4 does the overstability. It is noteworthy that the cupge=0
= S - is very close to the critical curves by the stationary mode
dt skzra) YoV guavay YoveT aR Y c 4 L

29 neark=~0.5. Hence the singular behavior arouket 0.5 is
(22) captured partially in the four-mode minimum truncated sys-
dip oK3 1 K2+ 16 tem. However, we cannot find the critical Reynolds number
2
TR Woth— e Wy, (23)  for k<0.48. N .
( ) In order to reproduce the critical curve by the oscillatory
mode we include five other modes generated through the
(24) nonlinear interaction between the present four modes as fol-
lows:

dis 3k3 1 9k?+16
at - 8okt 1e YT R T4 Ve
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ondary flow grows ag’R— R.. Hence this bifurcation isor-

mal pitchfork. The stable secondary oscillatory state is also
. found for 1k=0.2,0.3 by numerical simulation. The ampli-
tude dependence is also found to depend/Br- R;. There-
fore this bifurcation is regarded a®rmal Hopf.

100 T T T i T T T T

V. CONCLUDING REMARKS

We have analyzed the stability and the bifurcation of the
planar rectangular cell flowyr =sinkxsiny (0<k<e0), in
an infinite array of thex direction[(—,»)X[0,7]] or fi-
nite M arrays([OM #/k]X[0,7], M=2,3,4 on the assump-
tion of a stress-freeboundary condition on the lateral walls.
The numerical results of the eigenvalue problems on the
infinite array reveal that a mode representing a global circu-
lating vortex in the whole regiong~siny) appears in the
—_ y-elongated cases | 1), while a mode representirgua-
0 0.5 1/k 1 siperiodic arrays of counter-rotating vortices appears in the
x-elongated cases K#1) at large critical Reynolds num-

50

O e e 2 Q0GR G e O
L

ber.

FIG. 16. The critical Reynolds numb& in the range 8-1/k We clarify that the type of bifurcation is normal pitchfork
<1.2 fqr M=2. B_old line, thg stationary mode by_ the nine-mode for y-elongated cases by the truncated system of three
(S:?gsstz;n,C?r?:?:Sedtlfl]ge’sigteio?lsail”ator)(; mode by theln'ne}:mde S_ﬁ’Ster?nodes. The three-mode truncated system is essentially the

' y mode; open circles, the oscillatongy o a5 the three-wave resonance with constant forcing and
mode by the converged values of the eigenvalue problem. . . . . .
damping[15]. The instability mechanism is decay-type ac-
cording to the terminology of the plasma physics. Hence the
oscillatory unstable mode cannot appear in this case.

We do not intend to discuss a quantitative value of satu-

rated amplitude by the severely truncated system. Neverthe-
kx 3kx L : . .
+ (1) Sin — sin2y + 5(t) sin —— sin2y less, it is appropriate to discuss the effect of the bottom fric-
2 2 tion and the truncation level on the nonlinear saturation.
K Dauxoiset al. [16] have shown numerically that the nonlin-
o kx - 3kx . o
+ hy(t)sin —= sin3y+ (t)sin —— siny ear saturation should depend on the bottom friction strongly
2 2 in the case of the Stuart vortices. In their study the bottom
friction makes the equilibrium amplitude small; it may be
sindy + i (t)sin—x Si regarded as a stabilizing effect. Hence the equilibrium am-
7 2 ny plitude would be smaller in our case if we included the bot-
tom friction. We have confirmed that the qualitative nature
of the bifurcation(norma) is unchanged by the increase of
the truncation level in some cases.

One peculiar feature of thg-elongated vortices is the
Substitution of Eq(21) into the basic equatiof) gives the large critical Reynolds number, e.d?;>50 for 1k=1.1.
coupled ordinary differential equation, whose form is omit- The qualitative interpretation is as follows: The relative
ted here. The linear stability analysis is performed numerifength of the adjacent sider/k, becomes smaller as the
cally. The results on the critical curvé®,(k) are given in  vortices becomes-elongated(1/k becomes largér Hence
Fig. 16. The critical curve by the oscillatory mode is satis-the interaction between corotating vortices maynsak the
factorily reproduced in addition to the curve by the stationaryortex merging is not likely to occur.
mode. It is remarkable that two curves are very close to the Another unique feature of the-elongated vortices is the
converged value of the eigenvalue problem in the regiorappearance of thguasiperiodicstructure of the mode. Gen-
1/k<0.6. The singular behavior arouike= 0.5 is captured in  eral theory on instabilities of one-dimensional cellular pat-
this nine-mode truncated system. However, we note that theerns has been proposed by Coullet and Iddsg. There
increase of the critical Reynolds number with increasirlg 1/ they present several types of coupled system of amplitude
is overestimated noticeably. We need to increase the trurand phase based on the symmetry argument and the Taylor
cated number of modes to reproduce this feature. Hence twexpansion. Our finding belongs to the categ@y3) in their
types of growth of the critical Reynolds number exist: one ispaper. They mention that no experimental evidence of this
approximated by a few modes, the other is essentially due toase is reported so far. However, it should be noted that their
many modes. analysis cannot be applied to our case. The reason is as fol-

Numerical simulation of the nine-mode truncated systenmlows: They assume a neutral spatial phase mpasving to
shows that the unstable mode to the main flgyy, grows to  the translational invariance of a homogeneous system. In our
saturate and constitutes the secondary steady flgWor  system the external forcing breaks this symmetry; no neutral
1k=0.6,0.7. It is confirmed that the amplitude of the sec-phase can exist. In the atmosphere thelongated convec-

k
Y= o(1) Sinkx siny + gy (t)sin ?X siry

- 3kx
+ o(t)sin TN

5kx

+ g(t)sin 5 sindy. (27
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tion is often observed. It is of great interest to clarify whetherconservation because the initial state has no total angular
the spontaneous formation of the quasiperiodic structure imiomentum. In the rapidly diverging char.mella pair of e!on_-
observed or not in the secondary bifurcation of this casegated vortices attached to the walls, which is symmetric in

though the three-dimensional effect may play an essentighe centerline of the channel, is observed at the relatively low
role in this case. Reynolds number. Beyond the critical Reynolds number one

In a pair of planar counter-rotating vortices, the globalof the vortices becomes larger while the other becomes
circulating stationary mode, which is similar to the infinite Smaller, which is similar to our case in Fig. 11. We expect
array case, appears fork0.5 while another oscillatory that this symmetry-breaking transition is essentially the same
mode appears for 14 0.5. At the poink,~0.5 between the as ours, though the main flow along the channel exists in this
regions of the two modes the critical Reynolds number take§2S€- I this sense the merging of the counter-rotating vorti-

an extreme large value. Based on the analysis of the fouces in confined system is universal. Our results suggest that a

mode truncated system the singular behavior of the criticalPC@l oscillation may be observed if a pair of very elongated

Reynolds number of the stationary mode is reproduced quahVOrticeS appears in_th_e channel. . i
tatively. However, the critical Reynolds number by the os- One severe restriction O.f _ourstudy Is to apply thg artiiicial
cillatory mode for small 1 (1k<0.45) is not found. Hence stress-free boundary condition. However, the previous work
the oscillatory nature of the mode is not obtained by the‘ShOWS that the structyre of the mod_e explains the pattern
minimum truncated system. The results on the next stage @P°S€"ved in the experiment by Tabeliegal. The work of
the truncated systefmine-mode systejrare similar to those aka_mura{18], who ap_plles t_he viscous lateral boundary in
the direct numerical simulation of the arrays of the planar

of the numerical eigenvalue problems including the oscilla-" "~ h hat the vi bound diti hould
tory instability and the singular behavior. Hence the singulai’Crtices, shows that the viscous boundary condition shou

a . "
behavior of the critical Reynolds number is captured by abe used to obtam_ the co'rrect v_alue of the critical Reynolds
low-dimensional dynamical system. However, the apparen'twmber for the primary bifurcation. At the present stage we
discrepancy around H# 0.8 is found. In this region a large s_peculate_ that the_pattern of our results IS not Changed. appre-
number of the modes are necessary to obtain a reliable critflably \.Nh'le our critical Reynolds humber is changed signifi-
cal Reynolds number in contrast with the regiok~0.5. cantly if we apply the viscous boundary condition. The nu-

Based on this truncated system, we clarify that both pitCh_rnerical treatment of the eigenvalue problem with the viscous
fork and Hopf bifurcations are nérmal boundary condition is now in progress. The detail of the

A global circulating mode is essentially due to the exis-reSUItS will be reported elsewhere.
tence of the lateral walls because the total angular momen-
tum is conserved in an unbounded region without walls even
in the viscosity-dominant flow. Apparently the growth of the  We acknowledge Professor M. Tajiri for his encourage-
global circulating mode destroys the angular momentunment throughout this work.
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