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Vortex merging, oscillation, and quasiperiodic structure in a linear array of elongated vortices
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Linear stability and the secondary flow pattern of the rectangular cell flow,C5sinkxsiny (0,k,`), are
investigated in an infinitely long array of thex direction @(2`,`)3@0,p## or various finiteM arrays
(@0,Mp/k#3@0,p#) on the assumption of a stress-free boundary condition on the lateral walls. The numerical
results of the eigenvalue problems on the infinite array show that a mode representing a global circulating
vortex in the whole region (c'siny) appears in they-elongated cases (k.1), which confirm the secondary
flow observed in Tabelinget al. @J. Fluid Mech.213, 511 ~1990!#, while a mode representingquasiperiodic
arrays of counter-rotating vortices appears in thex-elongated cases (k,1) at large critical Reynolds number.
In large finite arrays the mode connected with those of the caseM5` appears for most cases while another
~oscillatory! mode appears for vortices elongated in they direction. The parameter region of the oscillatory
modes becomes wider when the system size (M ) becomes smaller. For a pair of counter-rotating vortices
(M52) at the pointk0 between the regions of the two modes the critical Reynolds number takes an extreme
large value. Analysis of a finite nonlinear system obtained by the Galerkin method shows the nonlinear
saturation of the critical modes, though its results are in quantitative agreement with those of the linear stability
in a limited region ofk. @S1063-651X~97!12905-1#

PACS number~s!: 47.54.1r, 47.20.2k, 47.32.2y
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I. INTRODUCTION

Research on pattern formation in a nonequilibrium dis
pative system is regarded as a fundamental problem in m
ern physics. One of the simplest nontrivial spatial pattern
apparently a periodic structure. This structure appears
neric in the sense that it is formed through the nonlin
saturation of the unstable mode to a quiescent state.
bifurcation of the periodic structure is a central topic of t
pattern formation in nonequilibrium systems such as fl
dynamics, chemical reaction systems, and so on. Var
kinds of instability from the periodic structures, especia
so-called rolls, are found and analyzed based on the b
equations and the reduced equations such as the env
equation, the phase equation, and so on@1–3#.

Here we consider the problem of the stability and t
bifurcation of a linear array of counter-rotating vortices in
very thin layer of incompressible viscous fluids. The ba
state has a one-dimensional periodicity in an infinitely e
tended array. In laboratory experiments equipment is dev
to realize such spatially periodic flows in which an elect
lyte or a liquid metal in a very shallow vessel is driven by t
action of Lorentz force periodically arranged. Such expe
ments are now widely performed by several groups@4–7# to
investigate the bifurcation of the flows and the tw
dimensional turbulence. In particular, an initial stage of o
investigation@8#, where two-dimensional unbounded lattic
of vortices are considered, aims to explain the results of
experiments by Tabelinget al. @6# theoretically. Here we
clarify the nature of its stability, thoroughly taking into a
count the lateral boundaries and the wide range of par
eters. It is known that this type of flow is approximate
described by the two-dimensional Navier-Stokes equa
with inhomogeneous terms due to an external forcing
additional damping terms originating from the bottom fri
571063-651X/98/57~1!/449~11!/$15.00
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tion, although a suitable representation of the frictional eff
is still being debated@4,9#. Along this line, we adopt the
two-dimensional Navier-Stokes equation in order to anal
our problem.

In the Rayleigh-Be´nard problem and the Taylor-Couet
problem, which are regarded as a paradigm of the patt
forming hydrodynamical systems, periodic structures eme
spontaneously by a linearly unstable mode, not by an ex
nal forcing; the form of the observed vortices is almost is
tropic. On the other hand, in our problem the form and
configuration of the vortices are controlled by the appli
forcing and the setup of the experimental apparatus w
relative ease. Actually the linear array of the elongated v
tices is achieved in the experiment by Tabelinget al. @6#.
Hence this problem is very suitable to investigate how
structure of the individual vortex in the linear array corr
lates with the type of bifurcation or the dominant linear
unstable mode. In this study we focus on the structure of
unstable mode of several arrays of various elongated vort
in this paper. Here we do not consider more general confi
rations, or lattices of vortices. The linear stability of squa
lattices of isotropic vortices was investigated by Thess@10#,
who did not consider the case of the linear array. The res
were extended to arbitrary lattices of the isotropic vortices
Fukuta and Murakami@11#, where a qualitative difference
between the linear array and the others was discussed.

In addition to the above purpose, the interaction of seve
concentrated vortices is a fundamental problem in fluid
namics. A part of our problem seems related to the dynam
of separated vortices in a wall of confined systems wh
often appear in engineering applications. For example
rapidly diverging channel flow a pair of counter-rotating vo
tices appears attached to the diverging part of the wall@12#.
This situation is achieved approximately planar; it resemb
the case of a pair of counter-rotating vortices in a rectang
449 © 1998 The American Physical Society
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450 57HIROAKI FUKUTA AND YOUICHI MURAKAMI
region treated here. Therefore it is expected that our prob
is useful to understand a general feature of the stability of
planar vortices confined by the rigid wall. The roll observ
in the convection of the troposphere is often stretched h
zontally @13#. Our results of long arrays of the vortices ma
give some insight into the secondary bifurcation of this p
tern.

This paper is organized as follows. First, we present
main flow modeling the elongated vortex, formulate t
problem of the linear stability, and state the assumption
our treatment. Second, we give the main results of the lin
stability, i.e., the critical Reynolds number and the struct
of the critical mode. Third, in order to investigate qualitati
nonlinear dynamics we introduce and analyze the system
the limited modes on the basis of the Galerkin method.
nally, we summarize our results, discuss the relation of
experiments and other problems, and comment on poss
future works.

II. FORMULATION OF THE PROBLEM

We consider a linear array in thex direction of the rect-
angular vortices represented by

C̄~x,y!5sinkx siny, ~1!

where 0,k,`. Hence this flow neglects the inner structu
of the individual vortex observed in experiments, though
streamlines resemble the observed ones. The reason
choosing this flow is to conduct the eigenvalue problem re
tively easily in numerical computation. We consider tw
types of regions:

DM ,15@0,Mp/k#3@0,p#, ~2!

D`,15~2`,`!3@0,p#. ~3!

Note that the main flow does not satisfy the nonslip~viscous!
boundary condition~or rigid boundary condition!, only the
impermeable condition. In addition to the latter, the relat
DC50 holds; the so-called stress-free boundary conditio
satisfied. These conditions may not be satisfied well in s
walls of laboratory experiments. Nevertheless, we accept
assumption because the numerical calculation is much e
than the nonslip condition. The justification for this assum
tion requires comparison with experiments or numerical c
culation with the nonslip condition. Later we argue this po
in Concluding Remarks.

Since the flow is realized in a very thin layer, we consid
the governing equation for two-dimensional incompressi
fluids as follows:

]DC

]t
1

]~DC,C!

]~x,y!
5

1

R
D2C2

~k211!2

R
sinkx siny,

~4!

where all quantities have been made nondimensio
t is the time,C is a stream function,R is the Reynolds
number, D f 5(]2f /]x2)1(]2f /]y2), and ]( f ,g)/](x,y)
5(] f /]x)(]g/]y)2(] f /]y)(]g/]x). The last inhomoge-
neous term represents an external force, which permits
main flow to exist. Here we neglect the effect of the botto
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friction that inevitably exists in laboratory experiments. Th
is also a strong assumption for our treatment. Therefore
would like to stress that our treatment should be regarde
a modelin connection with the laboratory experiments.

The linearized equation governing the stream funct
c(x,y,t) of infinitesimal disturbance superposed on the m
flow ~1! is given by

]Dc

]t
1

]~DC̄,c!

]~x,y!
1

]~Dc,C̄!

]~x,y!
5

1

R
D2c, ~5!

where we omit the nonlinear term of the disturbances.
also apply the stress-free boundary conditions for the dis
bance:

c5Dc50, ~6!

which is the same as that of the main flow. In accordan
with Eq. ~6!, the stream function in the finite array,DM ,1
5@0,Mp/k#3@0,p#, is expanded as

c~x,y,t !5exp~st ! (
m,n51

`

am,nsin
m

M
x sinny. ~7!

Note that the application of the stress-free boundary con
tion as a substitute for a viscous boundary condition me
replacement of the first derivative of the stream function w
the second one. Hence the number of boundary condition
suitable for the viscous term. We also expand the stre
function in the infinitely long array, D`,15(2`,`)
3@0,p#, as

c~x,y,t !5exp~st1 iax! (
m51

`

amsinny, ~8!

wherea(0,a,1) is a real Floquet number.
Substitution of Eqs.~7! and ~8! into Eq. ~5! leads to an

infinite set of simultaneous algebraic equations foram,n ex-
pressed symbolically assa5Da, wherea and D are the
two- and four-dimensional matrices of infinite order, respe
tively. Therefore we can obtain the growth rates r5Re@s#
by solving this eigenvalue problem. We reduce the range
exponents to 0,a,0.5 due to the form of the main flow~1!.
In the numerical computation we replace the infinite set w
a finite set of equations (umu<Nx ,unu<Ny). In order to get
sufficient accuracy,Nx3Ny should be varied in a wide rang
between 334 and 8340.

In an unbounded region, (2`,`)3(2`,`), the solution
of Eq. ~5! is represented in the form

c̃a,b~x,y,t !5exp@s̃t1 i ~akx1by!#Fa,b~kx,y!, ~9!

since the coefficient functions in Eq.~5! have the period
2p/k in x and 2p in y, wherea and b are ~real! Floquet
exponents. The symmetry of the main flowC̄(2x,y)
5C̄(x,2y)52C̄(x,y) ensures that linear combinations

c̃a,b~x,y,t !2c̃a,b~2x,y,t !2c̃a,b~x,2y,t !

1c̃a,b~2x,2y,t !

and
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57 451VORTEX MERGING, OSCILLATION, AND . . .
c̃a,b~x,y,t !2c̃a,b~x,2y,t !

are also a solution of Eq.~9! in an unbounded region. Th
former combination ofc̃a,b satisfies the boundary conditio
~6! in DM ,1 for some discrete values ofam ,bn :

am5
m

M
, bn50, S m50,...,FM

2 G D , ~10!

where @x# denotes the largest natural number that is
greater thanx. The eigenmodec̃ is represented by

c~x,y,t !5c̃am ,bn
~x,y,t !2c̃am ,bn

~2x,y,t !

2c̃am ,bn
~x,2y,t !1c̃am ,bn

~2x,2y,t !,

~11!

In a similar way we have the representation forD`,1 ,

c~x,y,t !5c̃a,bn
~x,y,t !2c̃a,bn

~x,2y,t !. ~12!

In order to save the CPU time we often use the results of
linear stability in an unbounded region and relate them to
problemDM ,1 instead of solving the problem directly.

III. RESULTS OF LINEAR STABILITY

In this section we give the results of the linear eigenva
problem. We have two parameters characterizing the m
flows: 1/k is the ratio of the length of the sides of each vort
and M is the number of the vortices. Hereafter we usek
instead ofk for convenience. Hence the case with small 1k
corresponds to they-elongated vortex while that with larg
1/k to thex-elongated vortex.

A. Infinitely large array of vortices: M 5`

Here we neglect the lateral boundaries that are paralle
the y axis; it is the simplest case of all and has the sa
symmetry of the roll in the infinite region. We present t
main results of the critical Reynolds number for various v
ues of the inverse of the parameter 1/k between 0 and 1.2 in
Fig. 1. This shows that the critical Reynolds number
creases with increasing 1/k. The curve in the range 0,1/k
,1 is the same as the Reynolds number due to
periodic modein Fig. 1 of @8#. Note thatk in that work
corresponds to 1/k in this work. The large-scale mode, whic
has an almost uniform structure and whose growth r
shows the negative eddy viscosity, is excluded by the lat
boundaries. We would like to stress that the array of
y-elongated vortices (1/k,1) becomes unstable at relative
low Reynolds number while that of thex-elongated vortices
(1/k.1) becomes remarkably stable. We do not obtain
critical Reynolds number for 1/k.1.2 because of the lack o
memory of the standard workstation. This result sugge
that the ratio of the sidesk is a very important factor on the
order of the critical Reynolds number.

Next we describe the character of the critical modes. T
critical modes are alwaysstationary ~i.e., Ims50!; the bi-
furcation is expected to be a pitchfork type and cause a t
sition from a stable steady state to one of the two ste
t
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branches of an intersecting parabolic curve at the crit
Reynolds number. In the next section we will discuss
nature of the bifurcation based on a crude Galerkin appro
mation. The Floquet exponentac of the critical modes is
always zero for 0,1/k,1 while ac is nonzero for 1/k.1.
Figure 2 shows thatac grows abruptly in the range 1/k.1
and takes a value of 0.5 atk51.16. Note thata is less than
0.5 for the symmetry. Figure 3 shows how the marginal R
nolds numbers depend ona for several 1/k. The Reynolds
number at the origin changes from minimum to maximu
At k51 the second derivative ofR(k,a50) vanishes. The
modes should be regarded as a modulation of the peri

FIG. 1. The critical Reynolds numberRc in the range 0,1/k
,1.2 for M5`.

FIG. 2. The critical Floquet exponentac in the range 0,1/k
,1.2 for M5`.
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452 57HIROAKI FUKUTA AND YOUICHI MURAKAMI
mode ata50 with the part exp(iax). Generally the period-
icity 2p/a is incommensurate with the basic periodicity; w
call these types of modesquasiperiodicmodes.

Figure 4~a! shows the structure of the periodic mode f
k50.33, which shows the global rotation similar to the ca
k51 @11#. In the upper part the flow is directed rightwa
while it is directed leftward in the lower part. As was pointe
out @8#, the streamlines of the superposition of the main fl
and the disturbance in Fig. 4~b! are very similar to the one
observed by the experiments@6#. The linear array become
composed of tilted vortices, alternatively big and small.
the disturbance grows, half the vortices are expanding

FIG. 3. The marginal Reynolds numberR(a) for k50.9,1,1.1
for M5`.

FIG. 4. ~a! The streamlines of the critical mode ofk50.33. ~b!
The streamlines ofC5sinkxsiny1cc ~c is 0.3, c is the periodic
mode, anducumax51! in the case withk50.33.
e

d

the others are squeezing. The growing process of the dis
bance looks likevortex mergingof pairs of counter-rotating
vortices. It should be noted that this merging is qualitative
different from the merging of the vortex with the same si
of vorticity usually observed in an unbounded region.
usual in pitchfork bifurcation, the sign of the vorticity is no
determined by the theory of the ideal situation; some bia
in the laboratory experiments may play a decisive role in
selection. Figure 5~a! shows the structure of the critical mod
for k51.1, which shows the stationaryquasiperiodicstruc-
ture. The change of the sign of the vorticity is due to the p
of the exponential factor of the eigenmode@i.e., exp(iax)#. It
is confirmed that the structure of the periodic part,F(kx,y),
is similar to that of the periodic mode. Superposition of t
main flow and the mode shows the quasiperiodic array of
vortices in Fig. 5~b!. This is, to our knowledge, the firs
theoretical evidence of spontaneous formation of a quasip
odic chain of vortices from the periodic chain, though t
laboratory experiments in these cases have not been
formed yet. Note that the large critical Reynolds numb
corresponds to the appearance of a quasiperiodic mode.

B. A pair of vortices: M 52

In contrast with Sec. III A, we consider another limit i.e
the smallest systems of the counter-rotating vortices.
note that no experiments of this configuration have been c
ducted yet, though the transition from two pairs of count
rotating systems is investigated in the experiments of Ta
ing et al. @6#.

We present the main results of the critical Reynolds nu
ber for various values of the inverse of the parameterk
between 0 and 1.2 in Fig. 6. There are two critical curves
contrast with the preceding subsection. The critical Reyno
number for a givenk is always larger than the correspondin
one for the infinitely long array. This is a natural result b
cause the confinement of the system excludes the large-s
disturbances. A stationary mode gives the right curve wh
another oscillatory mode gives the left one. It is a remarka
fact thatRc becomes very large aroundk50.5, though we do
not obtain an accurate value. Apart from this region,
tendency of the right curve resembles that of the curve
Fig. 1. This result also suggests that the ratio of the sidesk,
is a very important factor on the order of the critical Re
nolds number.

FIG. 5. ~a! The streamlines of the critical mode ofk51.1. ~b!
The streamlines ofC5sinkxsiny1cc ~c is 0.3,c is thequasiperi-
odic mode, anducumax51! in the case withk50.33.
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57 453VORTEX MERGING, OSCILLATION, AND . . .
Next we describe the character of the critical modes. T
critical modes arestationary ~i.e., Ims50! in the range
1/k.0.5; the bifurcation is expected to be a pitchfork. O
the other hand, the modes areoscillatory ~i.e., ImsÞ0! in
the range 1/k,0.5; the Hopf bifurcation is expected. Th
frequency of the critical modes decreases with 1/k increasing
until 1/k50.5, as shown in Fig. 7. In the next section we w
discuss the nature of the bifurcation based on a crude G
kin approximation.

Figure 8~a! shows the structure of the stationary mode
k50.6, which shows the global rotation of a system si

FIG. 6. The critical Reynolds numberRc in the range 0,1/k
,1.2 for M52. The bold line is due to the stationary mode; t
dashed line is due to the oscillatory mode.

FIG. 7. The critical frequencys ic in the range 0,1/k,1.2 for
M52.
e

r-

r
.

The streamlines are symmetric withx5p/k. However, the
velocity does not have a reflectional symmetry withx
5p/k as opposed to the main flow. As usual in pitchfo
bifurcation, the sign of the vorticity is not determined by th
theory. Figure 8~b! shows that one vortex is expanding an
the other is shrinking as the disturbance is growing. It a
looks like a vortex merging of a pair of counter-rotating vo
tices. Figures 9~a! and 9~b! show one-quarter of the period o
the oscillation of the structure of the critical mode fork
50.4. At an initial time with a suitable phase@Fig. 9~a!# it
looks like a global rotation of the stationary mode. At on
quarter of the period it looks a pair of counter-rotating vo
tices. The separated streamline is nearly parallel to thx
axis; it is approximately normal to that of the main flow
Figures 9~c! and 9~d! show that the flow of the main flow
plus the mode has no apparent symmetry; it becomes
symmetric than the main flow.

This type of oscillation is observed in the four-vortex sy
tem @14#. In this problem the interchange of the modes sim

FIG. 8. ~a! The streamlines of the critical mode ofk51.1. ~b!
The streamlines ofC5sinkxsiny1cc ~c is 0.3,c is thestationary
mode, anducumax51! in the case withk50.6.
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FIG. 9. ~a! The streamlines of the critical mode ofk50.4 at t5t0 . ~b! The same as~a! at t5t01T/4. ~c! The streamlines ofC
5sinkxsin y1cc ~c is 0.3,c is theoscillatory mode, anducumax51! in the case withk50.4 att5t0 . ~d! The same as~d! at t5t01T/4.
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lar to our problem is shown by the analysis of the trunca
system and a few laboratory experiments. Hence the osc
tory instability may be generic in the interaction of th
y-elongated vortices in a strongly confined system. Howe
the singular behavior similar to our problem is not obtain
in the four-vortex system.

C. Medium size of arrays of vortices: M 53,4

A natural question arises: how are the above two extre
cases connected?

Figure 10 shows the results of the critical Reynolds nu
ber of three vortices: M53 with the casesM52 andM
d
a-

r,
d

e

-

5`. Three curves are found. The right one~closed triangles!
represents the stationary mode, which behaves in a way s
lar to the stationary mode ofM52. It is between the curves
of M52 andM5` as we expect. The position of the ex
treme large value of the critical Reynolds number shifts le
ward. The middle curve~open triangles! represents the oscil
latory mode, which crosses the right curve in contrast w
the caseM52. The left curve~closed triangles! represents
another stationary mode, which does not appear in c
M52. Figure 11 shows the results of the critical Reyno
number of two pairs of vortices:M54 with the cases
M52 andM5`, which is similar to Fig. 10 qualitatively.
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57 455VORTEX MERGING, OSCILLATION, AND . . .
From Figs. 10 and 11 we learn that the results for re
tively large 1/k(.0.5) are not changed appreciably for va
ousM . On the other hand, a little complicated interchange
the modes is observed in the range 1/k,0.5. Here we do not
pursue the details of the region 1/k,0.1.

FIG. 10. The critical Reynolds numberRc in the range 0,1/k
,1.2 for M53. Lower bold line, the stationary mode forM5`;
upper bold line, the stationary mode forM52; dashed line, the
oscillatory mode forM52; closed triangles, the stationary mod
for M53; open triangles, the oscillatory mode forM53.

FIG. 11. The critical Reynolds numberRc in the range 0,1/k
,1.2 for M53. Lower bold line, the stationary mode forM5`;
upper bold line, the stationary mode forM52; dashed line, the
oscillatory mode forM52; closed squares, the stationary mode
M54; open squares, the oscillatory mode forM54.
-

f

IV. RESULTS OF NONLINEAR TRUNCATED SYSTEMS

In this section we clarify a nonlinear development of t
disturbance and a formation of the secondary flow patt
using a severely truncated system based on the Gale
method. It is expected that the cases with small critical R
nolds number are explained reasonably because the tru
tion numberNx3Ny is small enough to obtain a reliabl
critical number.

A. Infinitely large array of vortices: M 5`

The principle of the truncation is based on the results
the eigenvalue problem in the preceding section. In our pr
lem the structure of the eigenmode includes the largest c
ponent, which is limited by the system size. Usually it co
responds to the most energy-containing component. He
we must include at least the main flow and the largest co
ponent in the truncated system. Nonlinear interaction
tween modes produces other modes. Furthermore, t
modes interact with the former two modes so as to gene
other modes. Here we only take the former two modes
the modes produced by them and construct the nonlin
ordinary differential system. Hence it is regarded as themini-
mumnonlinear truncated system.

Based on this principle we expand the stream function
follows:

C~x,y,t !5c0~ t !sinkx siny1c1~ t !siny

1c2~ t !coskx sin2y. ~13!

The first term is the main flow, the second term is the larg
Fourier component in the linear eigenmode. These te
generate the last term through the nonlinear interaction.

Substitution of Eq.~13! into the basic equation~4! gives
the coupled ordinary differential equations as follows:

dc0

dt
5

k~k213!

2~k211!
c1c22

k211

R
c01

~k211!F

R
,

dc1

dt
52

3k

4
c2c02

1

R
c1 ,

dc2

dt
52

k3

2~k214!
c0c12

k214

R
c2 . ~14!

Note that we replace the forcing term by2@(k2

11)2F/R#sinkxsiny in Eq. ~4!.
Next we set the left-hand side of Eq.~15! equal to zero in

order to obtain the fixed point~or the steady state!. Two
types of fixed points are found:

c̄p05F,

c̄p150,

c̄p250, ~15!

which represents the main flow maintained by the exter
forcing without disturbances. No existence condition is
quired as we expect,

r
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456 57HIROAKI FUKUTA AND YOUICHI MURAKAMI
c̄s05
2A6

3

k214

k2

1

R
,

c̄s156
2

R

~k211!~k214!

k2Ak213
S F

c0
21D 1/2

,

c̄s252
A6

3

k

k214
c1 , ~16!

which represents the secondary steady flow with satur
disturbances. The latter exists only if the following inequ
ity is satisfied:

F

c0
21.0, ~17!

which is also written as

F.
2A6

3R

k214

k2 . ~18!

It is remarkable that the component of the main flowc0 is
constant irrespective ofF in Eq. ~15! if we fix R and increase
F. Hence the excess energy is used only to make the dis
bance grow. This feature is illustrated in Fig. 12. The resu
are essentially the same as those of the three-wave reson
with constant forcing and damping@15#. In Fig. 12 we fixF
(51) and increaseR in order to compare the results of th
linear eigenvalue problem.

The linear stability of the former fixed point gives th
critical condition

Rc5
2A6

3F

k214

k2 . ~19!

FIG. 12. The steady state is plotted atF51. The critical Rey-
nolds number is 2.36.
ed
-

r-
s
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This corresponds to the existence condition of the latter fi
points, though we fix the forcing constantF here. The un-
stable mode for the fixed point has no imaginary part. N
merical simulation of the truncated system shows that
unstable mode to the main flow,cp , grows to saturate and
constitutes the secondary steady flowcs . Hence this bifur-
cation is anormal pitchfork. From Fig. 13 the critical value
Rc grows with increasing 1/k, which is consistent with the
results of the eigenvalue problem. The agreement betw
them for 1/k,0.5 is remarkable.

According to the linear stability, the latter fixed point
always stable for arbitraryR andF if they are satisfied with
the existence condition~18!. A number of numerical simula-
tions of the system~15! always show that the fixed point i
globally stable, though we do not prove the global stabil
of the latter fixed point rigorously. Note that the former fixe
point is shown to be globally stable when it is linearly stab
@15#. Hence we cannot predict the secondary instability
the framework of this system. Indeed this does not mean
the secondary instability never occurs in the origina
treated problem. An increase of the truncation number m
cause the results to change qualitatively. However, our m
concern is to understand the primary instability of the m
flow; this problem is beyond our scope.

In Fig. 14 we plot the ratio of the component generat
through the nonlinear interaction to the most energ
containing mode: uc2u/uc1u. The solid line shows the re
sults of the steady state~the latter fixed point! in the trun-
cated system while the open circles are obtained by the lin
eigenvalue problem. Note that this ratio of the steady s
does not change the magnitude of the steady state. The
incidence between two values for small 1/k (,0.5) means
that the main flow plus a considerably large amplitude of
most unstable mode corresponds to the steady state sat
by the nonlinear equation. Indeed we do not accept that
severely truncated system is still valid in a strongly sup
critical state. In this sense this coincidence partially suppo

FIG. 13. The critical Reynolds numberRc in the range 0,1/k
,1.2 for M5`. The bold line is by the three-mode truncated sy
tem; the closed circles are by the converged value of the eigenv
problems.
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the position that the streamlines of the naive superpositio
the linearly unstable mode on the main flow resemble th
of the laboratory experiment fork50.33 in @8#.

B. A pair of vortices

We apply the same principle of the selection of the co
ponents in order to obtain the minimum truncated syste
The most energy-containing component in the most unst
mode is sinkx/2 siny of the system size. Two other compo
nents are generated through the nonlinear interaction
tween the main flow and this component. Hence we set

c5c0~ t !sinkx siny1c1~ t !sin
kx

2
siny1c2~ t !sin

kx

2
sin2y

1c3~ t !sin
3kx

2
sin2y. ~20!

Substitution of Eq.~21! into the basic equation~4! gives the
coupled ordinary differential equations as follows:

dc0

dt
5

k~2k213!

8~k211!
c3c12

9k

8~k211!
c2c12

k211

R

3~c02 f !, ~21!

dc1

dt
52

9k~k224!

8~k214!
c0c22

k~5k2112!

8~k214!
c0c32

k214

4R
c1 ,

~22!

dc2

dt
5

9k3

8~k2116!
c0c12

1

R

k2116

4
c2 , ~23!

dc3

dt
52

3k3

8~9k2116!
c0c12

1

R

9k2116

4
c3 . ~24!

FIG. 14. The ratio of the most energy-containing mode to
main flow: uc2u/uc1u. The solid line shows the results of th
steady state~the latter fixed point! in the truncated system while th
open circles are obtained by the linear eigenvalue problem.
of
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Here we do not try to obtain all steady states. We o
consider the linear stability of the trivial steady state:

c̄p05F,

c̄p j50 ~ j 51 – 3!. ~25!

Employing the linear stability analysis of the steady state
obtain the characteristic equation

s31c1s21c2s1c350, ~26!

where we do not give the explicit form of the coefficientscj
( j 51 – 3) to save space. Applying the Rouse-Hurwitz cri
rion to Eq. ~26!, we obtain the critical Reynolds numbe
Rc(k) as shown in Fig. 15. The solid curve showsc350
while the dashed curve showsc1c22c350. In the downside
of each curve, the inequalityc3.0 andc1c22c3.0 holds,
respectively. The region below both curves is stable wh
the other regions are unstable. The boundaryc350 indicates
the exchange of stability while the boundaryc1c22c350
does the overstability. It is noteworthy that the curvec350
is very close to the critical curves by the stationary mo
neark'0.5. Hence the singular behavior aroundk'0.5 is
captured partially in the four-mode minimum truncated s
tem. However, we cannot find the critical Reynolds numb
for k,0.48.

In order to reproduce the critical curve by the oscillato
mode we include five other modes generated through
nonlinear interaction between the present four modes as
lows:

e
FIG. 15. The critical Reynolds numberRc in the range 0,1/k

,1.2 for M52. Bold line,c350; dashed line,c1c22c350 by the
four-mode system; closed circles, the stationary mode; open cir
the oscillatory mode by the converged values of the eigenva
problem.
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c5c0~ t !sinkx siny1c1~ t !sin
kx

2
siny

1c2~ t !sin
kx

2
sin2y1c3~ t !sin

3kx

2
sin2y

1c4~ t !sin
kx

2
sin3y1c5~ t !sin

3kx

2
siny

1c0~ t !sin
3kx

2
sin3y1c7~ t !sin

5kx

2
siny

1c8~ t !sin
5kx

2
sin3y. ~27!

Substitution of Eq.~21! into the basic equation~4! gives the
coupled ordinary differential equation, whose form is om
ted here. The linear stability analysis is performed num
cally. The results on the critical curvesRc(k) are given in
Fig. 16. The critical curve by the oscillatory mode is sat
factorily reproduced in addition to the curve by the station
mode. It is remarkable that two curves are very close to
converged value of the eigenvalue problem in the reg
1/k,0.6. The singular behavior aroundk'0.5 is captured in
this nine-mode truncated system. However, we note that
increase of the critical Reynolds number with increasingk
is overestimated noticeably. We need to increase the t
cated number of modes to reproduce this feature. Hence
types of growth of the critical Reynolds number exist: one
approximated by a few modes, the other is essentially du
many modes.

Numerical simulation of the nine-mode truncated syst
shows that the unstable mode to the main flow,cp , grows to
saturate and constitutes the secondary steady flowcs for
1/k50.6,0.7. It is confirmed that the amplitude of the se

FIG. 16. The critical Reynolds numberRc in the range 0,1/k
,1.2 for M52. Bold line, the stationary mode by the nine-mo
system; dashed line, the oscillatory mode by the nine-mode sys
closed circles, the stationary mode; open circles, the oscilla
mode by the converged values of the eigenvalue problem.
-
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ondary flow grows asAR2Rc. Hence this bifurcation isnor-
mal pitchfork. The stable secondary oscillatory state is a
found for 1/k50.2,0.3 by numerical simulation. The ampl
tude dependence is also found to depend onAR2Rc. There-
fore this bifurcation is regarded asnormal Hopf.

V. CONCLUDING REMARKS

We have analyzed the stability and the bifurcation of t
planar rectangular cell flow,C5sinkxsiny (0,k,`), in
an infinite array of thex direction @(2`,`)3@0,p## or fi-
nite M arrays~@0,Mp/k#3@0,p#, M52,3,4! on the assump-
tion of a stress-freeboundary condition on the lateral walls

The numerical results of the eigenvalue problems on
infinite array reveal that a mode representing a global cir
lating vortex in the whole region (c'sin y) appears in the
y-elongated cases (1/k,1), while a mode representingqua-
siperiodic arrays of counter-rotating vortices appears in t
x-elongated cases (1/k.1) at large critical Reynolds num
ber.

We clarify that the type of bifurcation is normal pitchfor
for y-elongated cases by the truncated system of th
modes. The three-mode truncated system is essentially
same as the three-wave resonance with constant forcing
damping@15#. The instability mechanism is decay-type a
cording to the terminology of the plasma physics. Hence
oscillatory unstable mode cannot appear in this case.

We do not intend to discuss a quantitative value of sa
rated amplitude by the severely truncated system. Never
less, it is appropriate to discuss the effect of the bottom f
tion and the truncation level on the nonlinear saturati
Dauxoiset al. @16# have shown numerically that the nonlin
ear saturation should depend on the bottom friction stron
in the case of the Stuart vortices. In their study the bott
friction makes the equilibrium amplitude small; it may b
regarded as a stabilizing effect. Hence the equilibrium a
plitude would be smaller in our case if we included the b
tom friction. We have confirmed that the qualitative natu
of the bifurcation~normal! is unchanged by the increase
the truncation level in some cases.

One peculiar feature of thex-elongated vortices is the
large critical Reynolds number, e.g.,Rc.50 for 1/k51.1.
The qualitative interpretation is as follows: The relati
length of the adjacent side,p/k, becomes smaller as th
vortices becomesx-elongated~1/k becomes larger!. Hence
the interaction between corotating vortices may beweak; the
vortex merging is not likely to occur.

Another unique feature of thex-elongated vortices is the
appearance of thequasiperiodicstructure of the mode. Gen
eral theory on instabilities of one-dimensional cellular p
terns has been proposed by Coullet and Iooss@17#. There
they present several types of coupled system of amplit
and phase based on the symmetry argument and the Ta
expansion. Our finding belongs to the category~A-3! in their
paper. They mention that no experimental evidence of
case is reported so far. However, it should be noted that t
analysis cannot be applied to our case. The reason is as
lows: They assume a neutral spatial phase modef owing to
the translational invariance of a homogeneous system. In
system the external forcing breaks this symmetry; no neu
phase can exist. In the atmosphere thex-elongated convec-

m;
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tion is often observed. It is of great interest to clarify wheth
the spontaneous formation of the quasiperiodic structur
observed or not in the secondary bifurcation of this ca
though the three-dimensional effect may play an essen
role in this case.

In a pair of planar counter-rotating vortices, the glob
circulating stationary mode, which is similar to the infini
array case, appears for 1/k.0.5 while another oscillatory
mode appears for 1/k,0.5. At the pointk0'0.5 between the
regions of the two modes the critical Reynolds number ta
an extreme large value. Based on the analysis of the f
mode truncated system the singular behavior of the crit
Reynolds number of the stationary mode is reproduced qu
tatively. However, the critical Reynolds number by the o
cillatory mode for small 1/k (1/k,0.45) is not found. Hence
the oscillatory nature of the mode is not obtained by
minimum truncated system. The results on the next stag
the truncated system~nine-mode system! are similar to those
of the numerical eigenvalue problems including the osci
tory instability and the singular behavior. Hence the singu
behavior of the critical Reynolds number is captured by
low-dimensional dynamical system. However, the appar
discrepancy around 1/k.0.8 is found. In this region a larg
number of the modes are necessary to obtain a reliable c
cal Reynolds number in contrast with the region 1/k'0.5.
Based on this truncated system, we clarify that both pit
fork and Hopf bifurcations are normal.

A global circulating mode is essentially due to the ex
tence of the lateral walls because the total angular mom
tum is conserved in an unbounded region without walls e
in the viscosity-dominant flow. Apparently the growth of th
global circulating mode destroys the angular moment
ch
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conservation because the initial state has no total ang
momentum. In the rapidly diverging channel a pair of elo
gated vortices attached to the walls, which is symmetric
the centerline of the channel, is observed at the relatively
Reynolds number. Beyond the critical Reynolds number o
of the vortices becomes larger while the other becom
smaller, which is similar to our case in Fig. 11. We expe
that this symmetry-breaking transition is essentially the sa
as ours, though the main flow along the channel exists in
case. In this sense the merging of the counter-rotating vo
ces in confined system is universal. Our results suggest th
local oscillation may be observed if a pair of very elongat
vortices appears in the channel.

One severe restriction of our study is to apply the artific
stress-free boundary condition. However, the previous w
shows that the structure of the mode explains the pat
observed in the experiment by Tabelinget al. The work of
Nakamura@18#, who applies the viscous lateral boundary
the direct numerical simulation of the arrays of the plan
vortices, shows that the viscous boundary condition sho
be used to obtain the correct value of the critical Reyno
number for the primary bifurcation. At the present stage
speculate that the pattern of our results is not changed ap
ciably while our critical Reynolds number is changed sign
cantly if we apply the viscous boundary condition. The n
merical treatment of the eigenvalue problem with the visco
boundary condition is now in progress. The detail of t
results will be reported elsewhere.
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